
Some notes on the Riemann integral

This section provides an alternate approach to the Riemann integral. The goal is to show that
monotone functions are Riemann integrable. The definition of upper and lower sums can be found in
the note at the bottom of page 299 of Stewart. Observe, however, that this only works for continuous
functions since for more general functions the infimum and supremum might not be obtained on the
intervals [xi, xi+1].

Definition 1. A partition P of the interval (a, b) is a finite subset of (a, b) containing both a and b.
We can order the set P in increasing order as P = {p0, p1, p2, . . . , pn}. In other words:

• p0 = a
• pn = b
• pj < pj+1 if 0 ≤ j < n.

The infimum of a set can be defined analogously to the supremum, but the following also works.

Definition 2. If A ⊆ R then t is the infimum of A if −t is the supremum of −A = {−a | a ∈ A}.

Definition 3. If f is a function from the interval (a, b) to the interval (c, d) and P = {p0, p1, p2, . . . , pn}
is a partition of (a, b) and 1 ≤ j ≤ n define:

• mj to be the infimum of {f(x) | pj−1 ≤ x ≤ pj}
• Mj to be the supremum of {f(x) | pj−1 ≤ x ≤ pj}.

If we restrict to continuous functions then we could use the text’s definition:

• mj to be the minimum value of {f(x) | pj−1 ≤ x ≤ pj}
• Mj to be the maximum value of {f(x) | pj−1 ≤ x ≤ pj}.

The mj and Mj depend on f and P of course, but it will usually not cause problems to supress this
in the notation. However, if it is necessary to indicate the dependence on P the notation mj(P ) and
Mj(P ) will be used.

Definition 4. If f is a function from the interval (a, b) to the interval (c, d) and P = {p0, p1, p2, . . . , pn}
is a partition of (a, b) define

• U(f, P ) =
∑n

j=1Mj(pj − pj−1)

• L(f, P ) =
∑n

j=1mj(pj − pj−1).

Note that if f is a positive function then U(f, P ) is the sum of the areas of rectangles whose union
contains the region bounded by the graph of f , while L(f, P ) is the sum of the areas of rectangles whose
union is contained in the region bounded by the graph of f .

Definition 5. If f is a function from the interval (a, b) to the interval (c, d) define

• L(f) to be the supremum of the set of all real numbers L(f, P ) where P is a partition of (a, b)
• U(f) to be the infimum of the set of all real numbers U(f, P ) where P is a partition of (a, b).

Definition 6. If f is a function from the interval (a, b) to the interval (c, d) and U(f) = L(f) then f

will be said to be Riemann integrable and the common value U(f) = L(f) is defined to be
∫ b

a
f .

Lemma 1. If f is a function from the interval (a, b) to the interval (c, d) and P is a partition of (a, b)
then U(f, P ) ≥ L(f, P ).

Proof. It suffices to show U(f, P )−L(f, P ) ≥ 0. From Definition 4 we know that U(f, P ) =
∑n

j=1Mj(pj−
pj−1) and L(f, P ) =

∑n
j=1mj(pj − pj−1) so

U(f, P )− L(f, P ) =
n∑

j=1

Mj(pj − pj−1)−
n∑

j=1

mj(pj − pj−1) =
n∑

j=1

(Mj −mj)(pj − pj−1)
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Since pj > pj−1 for each j it follows that (pj − pj−1) ≥ 0 for each j. Hence it suffices to show that
Mj ≥ mj. From Definition 3 we know that mj to be the infimum of {f(x) | pj−1 ≤ x ≤ pj} and Mj is
the supremum of the same set. Hence Mj ≥ mj. �

Lemma 2. If f is a function from the interval (a, b) to the interval (c, d) and P and Q are partitions
of (a, b) and P ⊆ Q then

• U(f,Q) ≤ U(f, P )
• L(f,Q) ≥ L(f, P ).

Proof. It will only be shown that U(f,Q) ≤ U(f, P ), the other assertion being similar and left as an
exercise. Consider first the case that Q has precisely one more point than P . Suppose that P =
{p0, p1, . . . pn} and Q = P ∪ {p∗}. There is then some j such that pj−1 < p∗ < pj. Then

U(f, P ) = M1(p1 − p0) +M2(p2 − p1) + . . .+Mj(pj − pj−1) + . . .+Mn(pn − pn−1)

and

U(f,Q) = M1(p1−p0) +M2(p2−p1) + . . .+Mj(Q)(p∗−pj−1) +Mj+1(Q)(pj−p∗) + . . .+Mn(pn−pn−1)

where the explicit dependence of Mj(Q) and Mj+1(Q) is indicated by the notation. Note that Mn(P ) =
Mn(Q) if n < j − 1 and Mn(P ) = Mn+1(Q) if n > j.

Hence it suffices to show that

Mj(pj − pj−1) ≥Mj(Q)(p∗ − pj−1) +Mj+1(Q)(pj − p∗).

But

Mj(pj − pj−1) = Mj(p
∗ − pj−1) +Mj(pj − p∗)

and so it suffices to show that Mj ≤Mj(Q) and Mj ≤Mj+1(Q). But according to Definition 3,

Mj is the supremum of {f(x) | pj−1 ≤ x ≤ pj}

whereas

Mj(Q) to be the supremum of {f(x) | pj−1 ≤ x ≤ p∗}
and so Mj(Q) ≤Mj since it is the supremum taken over a smaller set. Similary,

Mj+1(Q) to be the supremum of {f(x) | p∗ ≤ x ≤ pj}

and so Mj+1(Q) ≤Mj since it is also the supremum taken over a smaller set.
The general result then follows by induction on the number of elements in Q that are not in P . This

is left as an exercise. �

Corollary 1. If f is a function from the interval (a, b) to the interval (c, d) and P and Q are partitions
of (a, b) then L(f, P ) ≤ U(f,Q).

Proof. Using Lemma 1 and Lemma 2

L(f, P ) ≤ L(f, P ∪Q) ≤ U(f, P ∪Q) ≤ U(f,Q).

�

Corollary 2. If f is a function from the interval (a, b) to the interval (c, d) then L(f) ≤ U(f).

Proof. L(f) is the supremum of the set of all L(f, P ) while U(f) is the infimum of the set of all U(f, P ).
Since each L(f, P ) is less than or equal to any U(f,Q) the result follows. �

Corollary 3. If f is a function from the interval (a, b) to the interval (c, d) then in order to show
that f is Riemann integrable it suffices to show that for any ε > 0 there is some partition P such that
U(f, P )− L(f, P ) < ε.



Proof. Proceed by contradiction. Assume that U(f) 6= L(f). By Corollary 2 it follows that

(1) ε = U(f)− L(f) > 0.

Then use the hypothesis to find a partition P such that U(f, P )− L(f, P ) < ε. Then U(f, P ) ≥ U(f)
and L(f, P ) ≤ L(f). Hence

U(f)− L(f) ≤ U(f, P )− L(f, P ) < ε = U(f)− L(f)

using (1) and this is a contradiction. �

Theorem 1. If f is a monotone function from (a, b) to (c, d) then f is Riemann integrable.

Proof. Assume f is non-decreasing as a similar proof works for the case that f is non-increasing. Using
Corollary 3 let ε > 0. Let n be an integer so large that

(2)
(d− c)(b− a)

n
< ε

or, in other words, choose n to be an integer larger than (d− c)(b− a)/ε.
Now let s = (b− a)/n and let P be the partition defined by

P = {a, a+ s, a+ 2s, a+ 3s, . . . , a+ (n− 1)s, a+ ns}
and note that a+ ns = a+ (b− a) = b. Moreover, the points of P are equally spaced with consecutive
points a distance s apart. If we write P = {p0, p1, p2, . . . , pn} then pj = a+ js for each j between 0 and
n. In other words,

p0 = a, p1 = a+ s, p2 = a+ 2s, . . . pj = a+ js, . . . pn = a+ ns = b.

Notice that since f is non-decreasing, it follows that if pj−1 ≤ x ≤ pj then f(pj−1) ≤ f(x) ≤ f(pj) for
each j between 1 and n. Hence mj = f(pj−1) and Mj = f(pj) for each such j. This implies that

(3) if j > 1 then mj = Mj−1.

Notice also that since the pj are equally spaced, it follows that pj−pj−1 = (a+js)−(a+(j−1)s) = s
for each j. It follows that

U(f, P ) =
n∑

j=1

Mj(pj − pj−1) =
n∑

j=1

Mjs =
n−1∑
j=1

Mjs+Mns

and

L(f, P ) =
n∑

j=1

mj(pj − pj−1) =
n∑

j=1

mjs = m1s+
n∑

j=2

mjs = m1s+
n∑

j=2

Mj−1s = m1s+
n−1∑
j=1

Mjs

where (3) was used for the second to last equality. It follows that

U(f, P )− L(f, P ) = Mns−m1s = (Mn −m1)s

and, noting that Mn ≤ d and m1 ≥ c it follows that

U(f, P )− L(f, P ) ≤ (d− c)s = (d− c)(b− a)/n < ε

as required. �


